

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials)

From Springer

Download now

Read Online

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer

Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells.

In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

 [Download Physics and Technology of Amorphous-Crystalline He ...pdf](#)

 [Read Online Physics and Technology of Amorphous-Crystalline ...pdf](#)

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials)

From Springer

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer

Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells.

In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer Bibliography

- Sales Rank: #5353454 in Books
- Published on: 2011-10-27
- Original language: English
- Number of items: 1
- Dimensions: 9.21" h x 1.31" w x 6.14" l, 2.21 pounds
- Binding: Hardcover
- 582 pages

[Download Physics and Technology of Amorphous-Crystalline He ...pdf](#)

[Read Online Physics and Technology of Amorphous-Crystalline ...pdf](#)

Download and Read Free Online Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer

Editorial Review

From the Back Cover

The challenge of developing photovoltaic (PV) technology to a cost-competitive alternative for established energy sources can be achieved using simple, high-throughput mass-production compatible processes. Issues to be addressed for large scale PV deployment in large power plants or in building integrated applications are enhancing the performance of solar energy systems by increasing solar cell efficiency, using low amounts of materials which are durable, stable, and abundant on earth, and reducing manufacturing and installation cost. Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both "emitter" and "base-contact/back surface field" on both sides of a thin crystalline silicon wafer-base (c-Si) where the photogenerated electrons and holes are generated; at the same time, a Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells.

Users Review

From reader reviews:

Suzanne Cicero:

Do you one among people who can't read pleasant if the sentence chained from the straightway, hold on guys this aren't like that. This Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) book is readable by means of you who hate the perfect word style. You will find the details here are arrange for enjoyable examining experience without leaving actually decrease the knowledge that want to provide to you. The writer involving Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) content conveys the idea easily to understand by lots of people. The printed and e-book are not different in the content material but it just different such as it. So , do you continue to thinking Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) is not loveable to be your top listing reading book?

David Wysocki:

Reading a publication tends to be new life style in this particular era globalization. With reading you can get a lot of information that may give you benefit in your life. Together with book everyone in this world can certainly share their idea. Books can also inspire a lot of people. A great deal of author can inspire all their reader with their story or even their experience. Not only situation that share in the publications. But also they write about the knowledge about something that you need illustration. How to get the good score toefl, or how to teach your young ones, there are many kinds of book that you can get now. The authors on earth

always try to improve their proficiency in writing, they also doing some exploration before they write with their book. One of them is this Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials).

Sonia Cancel:

With this era which is the greater individual or who has ability in doing something more are more valuable than other. Do you want to become among it? It is just simple way to have that. What you should do is just spending your time not very much but quite enough to enjoy a look at some books. On the list of books in the top listing in your reading list is Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials). This book which is qualified as The Hungry Slopes can get you closer in getting precious person. By looking upward and review this book you can get many advantages.

Iona Calhoun:

Do you like reading a reserve? Confuse to looking for your preferred book? Or your book ended up being rare? Why so many concern for the book? But virtually any people feel that they enjoy for reading. Some people likes reading, not only science book but in addition novel and Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) or maybe others sources were given understanding for you. After you know how the truly amazing a book, you feel want to read more and more. Science reserve was created for teacher or even students especially. Those textbooks are helping them to increase their knowledge. In additional case, beside science reserve, any other book likes Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) to make your spare time more colorful. Many types of book like here.

Download and Read Online Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer #LHPOU9SDBKJ

Read Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer for online ebook

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer books to read online.

Online Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer ebook PDF download

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer Doc

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer MobiPocket

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer EPub

LHPOU9SDBKJ: Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Engineering Materials) From Springer